首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105926篇
  免费   9065篇
  国内免费   13261篇
化学   80844篇
晶体学   2394篇
力学   2263篇
综合类   1058篇
数学   10075篇
物理学   31618篇
  2024年   109篇
  2023年   1200篇
  2022年   1453篇
  2021年   2725篇
  2020年   2894篇
  2019年   3822篇
  2018年   2683篇
  2017年   3921篇
  2016年   3813篇
  2015年   3588篇
  2014年   4684篇
  2013年   8648篇
  2012年   6498篇
  2011年   7239篇
  2010年   5838篇
  2009年   6978篇
  2008年   7068篇
  2007年   7406篇
  2006年   6242篇
  2005年   5120篇
  2004年   4907篇
  2003年   4100篇
  2002年   3310篇
  2001年   2792篇
  2000年   2410篇
  1999年   1880篇
  1998年   1707篇
  1997年   1507篇
  1996年   1422篇
  1995年   1429篇
  1994年   1241篇
  1993年   1130篇
  1992年   1045篇
  1991年   724篇
  1990年   541篇
  1989年   482篇
  1988年   486篇
  1987年   350篇
  1986年   357篇
  1985年   454篇
  1984年   342篇
  1983年   197篇
  1982年   396篇
  1981年   561篇
  1980年   495篇
  1979年   547篇
  1978年   419篇
  1977年   314篇
  1976年   276篇
  1973年   183篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
The practical application of advanced personalized electronics is inseparable from flexible, durable, and even self-healable energy storage devices. However, the mechanical and self-healing performance of supercapacitors is still limited at present. Herein, highly transparent, stretchable, and self-healable poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA)/poly(vinyl alcohol) (PVA)/LiCl polyelectrolytes were facilely prepared by one-step radical polymerization. The cooperation of PAMPSA and PVA significantly increased the mechanical and self-healing capacity of the polyelectrolyte, which exhibited superior stretchability of 938 %, stress of 112.68 kPa, good electrical performance (ionic conductivity up to 20.6 mS cm−1), and high healing efficiency of 92.68 % after 24 h. After assembly with polypyrrole-coated single-walled carbon nanotubes, the resulting as-prepared supercapacitor had excellent electrochemical properties with high areal capacitance of 297 mF cm−2 at 0.5 mA cm−2 and good rate capability (218 mF cm−2 at 5 mA cm−2). Besides, after cutting in two the supercapacitor recovered 99.2 % of its original specific capacitance after healing for 24 h at room temperature. The results also showed negligible change in the interior contact resistance of the supercapacitor after ten cutting/healing cycles. The present work provides a possible solution for the development of smart and durable energy storage devices with low cost for next-generation intelligent electronics.  相似文献   
102.
For seeking high‐efficiency narrow‐band‐gap donor materials to enhance short‐circuit current density for organic solar cells, a series of oligo‐selenophene (OS) and oligo(3,4‐ethylenedioxyselenophene) (OEDOS) with various chain lengths were designed and characterized using density functional theory (DFT) and time‐dependent DFT calculations. Based on the results, it can be seen that with increasing chain length of the oligomers in both syn‐ and anti‐adding manners, the bond length alternation is decreased which indicates that the π‐electron delocalization is increased. Also, when the chain length is increased the electronic energy gap and the optical energy gap are decreased. It can be concluded that the syn‐(OS)n=10,14,15, anti‐(OS)n=14 and anti‐(OEDOS)n=7–12 oligomers can act as low‐band‐gap polymers. Therefore they can absorb more sunlight based on maximum wavelength (higher than 620 nm). Furthermore, a red shift in the simulated absorption spectra of (OS)n and (OEDOS)n donors is observed. It is found that (OS)n=14,15 with syn configuration of the extended oligomers is the most suitable donor for the design of high‐performance organic solar cells possessing a narrow electronic band gap, high exciton lifetime and broad and intense absorption spectra that cover the solar spectrum leading to complete light‐harvesting efficiency.  相似文献   
103.
To develop an accurate and precise method for separation and pre-concentration of Hg(II), a novel thionin functionalised core shell structure magnetic material has been prepared and characterised. The extraction ability of the material was evaluated by magnetic solid-phase extraction coupled with inductively coupled plasma mass spectrometry determination of Hg(II) in food and water samples. Combining the advantages of magnetic separation with selective extraction of thionin towards Hg(II), the material exhibits enhanced enrich selectivity and efficiency for Hg(II). The experimental parameters influencing Hg(II) extraction efficiency, including pH of the aqueous solution, the dosage of the adsorbent, extraction time and sample volume, were systematically investigated. Under the optimised conditions, concentration of Hg(II) at 1.0 μg L?1 can be successfully enriched by the material without the interference of the common co-existing ions. The enrichment factor and adsorption capacity were 250 and 75.2 mg g?1, and precise of the method was confirmed by analysing the spiked food, water samples and standard water reference samples with the recoveries of 92.5–101.8%.  相似文献   
104.
Despite the outstanding properties of hyperbranched polyglycerols such as biocompatibility and multifunctionality, enough attention has not been paid to the synthesis of their functional copolymers. This problem has limited the structural diversity of hyperbranched polyglycerols and hampers further developments and their practical usage. In this work, butyrolactone segments were incorporated into the backbone of polyglycerols by one‐pot ring‐opening copolymerization of a mixture of glycidol and γ‐butyrolactone in the presence of tin(II) 2‐ethylhexanoate. Poly(glycerol‐oligoγ‐butyrolactone)s were then crosslinked by 2,5‐thiophenediylbisboronic acid to obtain polymeric nanonetworks with 140 nm average size. Afterwards, the gold electrode was modified by the polymeric nano‐networks, and it was used for the determination of glucose, glycated hemoglobin, and Escherichia coli in phosphate buffer solution (pH = 9.0) through cyclic voltammetry and impedance spectroscopic. Taking advantage of the straightforward synthesis, cheap precursors and multifunctionality of poly(glycerol‐oligoγ‐butyrolactone)s, they could be used for real‐time sensing of a wide range of biosystems. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1430–1439  相似文献   
105.
In this study, a new, economical and green method was reported for synthesizing Fe3O4@CuO nanoparticles without adding any surfactants using Euphorbia polygonifolia extract as a renewable, mild and safe reducing agent and effective stabilizer. The green synthesized NPs were analyzed by various methods such as XRD, FESEM, FT-IR, EDS, VSM, UV–visible, DRS, BET and TGA-DTA. Based on the BET analysis, the Fe3O4@CuO NP had a surface area of 69.20 m2/g. The FTIR analysis verified the existence of different functional groups of phytochemicals from Euphorbia polygonifolia extract which were accountable for the NPs formation. The catalytic performance of the catalyst for the degradation of metronidazole, ciprofloxacin and cephalexin antibiotics was examined in aqueous mediums at room temperature. The results showed an extraordinary catalytic performance, easy reusability and long-term stability of the composite for reducing antibiotic pollution. In this process, the effects of environmental conditions such as initial pH of the environment, initial concentration of antibiotics, the concentration of modified photocatalyst and reaction time were studied. According to the results, at the optimal conditions, the highest removal efficiency for metronidazole, ciprofloxacin and cephalexin antibiotics using Fe3O4@CuO nanoparticles, were 89%, 94%, and 96%, respectively. Also, it was observed that even after recycling, the NPs presents good nanocatalytic stability for the degradation of antibiotics. Using the NPs for five cycles did not significantly alter the photocatalyst efficiency, showing that the photocatalytic stability of the NPs was excellent.  相似文献   
106.
A string of four new hetero binuclear Ru(III) complexes of ferrocenecarboxaldehyde-4(N)-substituted thiosemicarbazones were synthesized and characterized by various spectral (infrared, ultraviolet–visible, Electron Paramagnetic Resonance (EPR) and High Resolution Mass Spectrometry (HR-MS) techniques. The binding abilities of the ligands/complexes with nucleic acid (calf thymus DNA, CT-DNA) and bovine serum albumin (BSA) were analyzed by absorption and emission titration methods. The complexes exhibited better DNA binding affinity than their parent ligands. The interaction with CT-DNA was found to be intercalative and with BSA static quenching mechanism was observed. All the synthesized Ru(III) complexes were subjected to study their in vitro cytotoxicity against MCF-7 (human breast cancer) and HT-29 (human colon cancer) cell lines. Among the four complexes, complex 3 [RuCp (FF-etsc)PPh3]Cl exhibited the highest cytotoxicity in MCF-7 cells and complex 4 [RuCp (FF-ptsc)PPh3]Cl was the most active on HT-29 cells.  相似文献   
107.
In this research, the main emphasis has been focused on the preparation of a novel Fe3O4-supported propane-1-sulfonic acid-grafted graphene oxide quantum dots (Fe3O4@GOQD-O-(propane-1-sulfonic acid)) that it was readily synthesized via a five-step procedure as a hitherto unreported magnetic nanocatalyst. This newly prepared Fe3O4@GOQD-O-(propane-1-sulfonic acid) nanocomposite was structurally well-established by different analytical techniques including Fourier transform infrared (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), thermal gravimetric analysis (TGA), field emission gun-scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM) analyses. The high catalytic performance of this nanocomposite was exhibited in one-pot synthesis of dihydropyrano[2,3-c]pyrazole and 4H-chromene derivatives under mild conditions. Low reaction times, excellent yields of the products, benignity of the catalyst, easy reaction work-up and magnetic recyclability of the catalyst are the main advantages of the present protocol. Also, our research indicated that the Fe3O4@GOQD-O-(propane-1-sulfonic acid) could be reused up to five times without considerable loss of catalytic activity.  相似文献   
108.
Consider an elastic thin three-dimensional body made of a periodic distribution of elastic inclusions. When both the thickness of the beam and the size of the heterogeneities tend simultaneously to zero the authors obtain three different one-dimensional models of beam depending upon the limit of the ratio of these two small parameters.  相似文献   
109.
This paper is our attempt, on the basis of physical theory, to bring more clarification on the question “What is life?” formulated in the well-known book of Schrödinger in 1944. According to Schrödinger, the main distinguishing feature of a biosystem’s functioning is the ability to preserve its order structure or, in mathematical terms, to prevent increasing of entropy. However, Schrödinger’s analysis shows that the classical theory is not able to adequately describe the order-stability in a biosystem. Schrödinger also appealed to the ambiguous notion of negative entropy. We apply quantum theory. As is well-known, behaviour of the quantum von Neumann entropy crucially differs from behaviour of classical entropy. We consider a complex biosystem S composed of many subsystems, say proteins, cells, or neural networks in the brain, that is, S=(Si). We study the following problem: whether the compound system S can maintain “global order” in the situation of an increase of local disorder and if S can preserve the low entropy while other Si increase their entropies (may be essentially). We show that the entropy of a system as a whole can be constant, while the entropies of its parts rising. For classical systems, this is impossible, because the entropy of S cannot be less than the entropy of its subsystem Si. And if a subsystems’s entropy increases, then a system’s entropy should also increase, by at least the same amount. However, within the quantum information theory, the answer is positive. The significant role is played by the entanglement of a subsystems’ states. In the absence of entanglement, the increasing of local disorder implies an increasing disorder in the compound system S (as in the classical regime). In this note, we proceed within a quantum-like approach to mathematical modeling of information processing by biosystems—respecting the quantum laws need not be based on genuine quantum physical processes in biosystems. Recently, such modeling found numerous applications in molecular biology, genetics, evolution theory, cognition, psychology and decision making. The quantum-like model of order stability can be applied not only in biology, but also in social science and artificial intelligence.  相似文献   
110.
宽禁带半导体具备禁带宽度大、电子饱和飘移速度高、击穿场强大等优势,是制备高功率密度、高频率、低损耗电子器件的理想材料。碳化硅(SiC)材料具有热导率高、化学稳定性好、耐高温等优点,在SiC衬底上外延宽禁带半导体材料,对充分发挥宽禁带半导体材料的优势,并提升宽禁带半导体电子器件的性能具有重要意义。得益于SiC衬底质量持续提升及成本不断降低,基于SiC衬底的宽禁带半导体电子市场占比呈现逐年增加的态势。在SiC衬底上外延生长高质量的宽禁带半导体材料是提高宽禁带半导体电子器件性能及可靠性的关键瓶颈。本文综述了近年来国内外研究者们在SiC衬底上外延SiC、氮化镓(GaN)、氧化镓(Ga2O3)所取得的研究进展,并展望了SiC衬底上宽禁带半导体外延的发展及应用前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号